Week 1 — LO2
Convex Optimization and Gradient
Descent (cont)

CS 295 Optimization for Machine Learning

loannis Panageas



Analysis of GD for L-smooth, u-convex

Theorem (Gradient Descent). Let f : R? — R be differentiable,
u-strongly convex (want to minimize) and L-smooth. Let R = ||xg — x™||,.

It holds for T = 2k 1n (£
[xr —x%l, <€,

with appropriately choosing « = 1.
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Analysis of GD for L-smooth, u-convex

Theorem (Gradient Descent). Let f : RY — R be differentiable,
u-strongly convex (want to minimize) and L-smooth. Let R = ||xg — x™||,.
It holds for T = % In (%)

lxr —x7[|, <€,

with appropriately choosing « = 1.

Proof of Theorem. It holds that
2

2
lxr = x*[15 = ||xr—1 = $VF(xr) — x| =
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Analysis of GD for L-smooth, u-convex

Theorem (Gradient Descent). Let f : R? — R be differentiable,
u-strongly convex (want to minimize) and L-smooth. Let R = ||xg — x™||,.

It holds for T = % In (%)
lxr —x"l; <°e,

with appropriately choosing « = 1.

Proof of Theorem. It holds that
2

2
lxr = x*1I3 = ||xr1 — £V (er 1) — 57| =

= |lxro1 —x* 3+ & IV (er—1) |5 — 2V F(xro1) T (xrq — %)
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Analysis of GD for L-smooth, u-convex

Theorem (Gradient Descent). Let f : R? — R be differentiable,
u-strongly convex (want to minimize) and L-smooth. Let R = ||xg — x™||,.

It holds for T = % In (%)
lxr —x"l; <°e,

with appropriately choosing « = 1.

Proof of Theorem. It holds that
2

2
lxr = x*1I3 = ||xr1 — £V (er 1) — 57| =

%112 2 *
= |lxr—1 —x*||5+ 75 IVf(xr—1) |3 =21 Vf(xr—1) T (x7—1 — x¥)
From Exercise 2 and then Claim 2 we get
FVf(rr—1) " (x* —xr-1) < F(f(x*) = fxr—1)) — [ 1" — x7_1]f3.

2 2
< — 5 [IVf(xr_)la — 7 llx* — xra]l3.
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Analysis of GD for L-smooth, u-convex

Theorem (Gradient Descent). Let f : RY — R be differentiable,
u-strongly convex (want to minimize) and L-smooth. Let R = ||xg — x™||,.
It holds for T = 2k 1n (£

lxr —x7[|, <€,

with appropriately choosing « = 1.

Proof of Theorem. It holds that
2

2
lxr = x*1I3 = ||xr1 — £V (er 1) — 57| =

= [lxr—1 — x*[3 + 2 | VF(xr—1) |3 — 22V f(xr—1) T (x7—1 — x¥)

Therefore |x7 — x*||3 < (1 — ) ||xr_1 — x*||5.
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Analysis of GD for L-smooth, u-convex

Theorem (Gradient Descent). Let f : RY — R be differentiable,
u-strongly convex (want to minimize) and L-smooth. Let R = ||xg — x™||,.
It holds for T = 2k 1n (£

lxr —x7[|, <€,

with appropriately choosing « = 1.

Proof of Theorem. It holds that
2

2
lxr = x*1I3 = ||xr1 — £V (er 1) — 57| =

= [lxr—1 — x*[3 + 2 | VF(xr—1) |3 — 22V f(xr—1) T (x7—1 — x¥)

Therefore || x7 — x*||3 < (1 — ) ||xr_1 — x*||3.

T
Thus |x7 — x*||5 < (1 — %)TR2 < e TR
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Analysis of GD for L-smooth, u-convex

Theorem (Gradient Descent). Let f : R — R be differentiable,
u-strongly convex (want to minimize) and L-smooth. Let R = ||xg — x*||,.

It holds for T = % In (%)
lxr —x7[|, <€,

with appropriately choosing « = 1.

P Remark (last iterate convergence!): x; — x*

2
lxr = x*113 = |[xr-1 — $Vf(xr1) —x°

2

= [lxr—1 — x*[3 + 2 | VF(xr—1) |3 — 22V f(xr—1) T (x7—1 — x¥)

Therefore || x7 — x*||3 < (1 — ) ||xr_1 — x*||3.

T
Thus ||lxr — x* |2 < (1— £)' R2 < e~ TR2
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Projected Gradient Descent (PGD)

(for differentiable functions)

Definition (Projected Gradient Descent). Let f : R? — R be differentiable
(want to minimize) in some compact convex set X. The algorithm below is called
projected gradient descent

Xkp1 = Ha(xp — aV f(xg)).

Remarks
* The projection might not be efficient (is also an optimization problem)!!
* The minimizer x* does not necessarily satisfy Vf(x*) = 0.

Question: When the last remark can be true?
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Analysis of Projected GD for L-Lipschitz

Theorem (Projected Gradient Descent). Let f : R? — R be differentiable,
convex (want to minimize in some compact set X) and L-Lipschitz. Let
R = ||x1 — x™*||,, the distance between the initial point xy and minimizer x*.

It holds for T = R;LZ

with appropriately choosing & = .

Remark
* Same guarantees as in the unconstrained case.
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Analysis of Projected GD for L-Lipschitz

Proof. Set y; := xy — aV f(x;). It holds that

fxs) = f(x*) < Vf(x) " (x¢ — x*) FOC for convexity,

Optimization for Machine Learning



Analysis of Projected GD for L-Lipschitz

Proof. Set y; := xy — aV f(x;). It holds that

fxs) = f(x*) < Vf(x) " (x¢ — x*) FOC for convexity,
1

— E(xt — ) ' (x; — x*) definition of GD,
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Analysis of Projected GD for L-Lipschitz

Proof. Set y; := xy — aV f(x;). It holds that

fxs) = f(x*) < Vf(x) " (x¢ — x*) FOC for convexity,
1

= - (xt — ) ' (x4 — x*) definition of GD,

1

= o (IIxe = %73+ % = ysl3 = 1y — "[13) law of Cosines,
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Analysis of Projected GD for L-Lipschitz

Proof. Set y; := xy — aV f(x;). It holds that

fxs) = f(x*) < Vf(x) " (x¢ — x*) FOC for convexity,

1

= —(xy — 1) " (2 — x*) definition of GD,

K
1

T
_1
2

(
(

xp—x°

x —x*

2

5 T

2
2

Xt — ytH% — ||y — x*H%) law of Cosines,

% (4
v —x"[3) +5 [ VF(xe)[3 Def. of v,
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Analysis of Projected GD for L-Lipschitz

Proof. Set y; := xy — aV f(x;). It holds that

fxs) = f(x*) < Vf(x) " (x¢ — x*) FOC for convexity,

1

= (%

I
1
20c

1
2
<1
20¢

(
(
(

xp—x°

Xt — X

x 12
2

2

2‘|_x

e = 15 = llye = *"[13) +

_ yt)T(xt — x*) definition of GD,

— ytHi — ||y — x*H%) law of Cosines,

. x
v —x°[3) + 5 V£ (x0)3 Def. of ys,

ocL2

Recall. Suppose f(x) is L-Lipschitz continous.

Then Vx € dom(f)

V), < L.
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Analysis of Projected GD for L-Lipschitz

Claim. It is true that

Iy (y) —x) ' (Ix(y) —y) < 0.

Proof. By picture.

Corollary. It is true that (Law of Cosines)

ly — x|I3 > 1T (y) — yl5 + T (y) — x|3
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Analysis of Projected GD for L-Lipschitz

2 2 2
Therefore ||y; — x*||5 > ||xtr1 — y||5 + || xe41 — XF|5

2
> ||xp41 — X*Hz

Proof. By picture.

y — Hx(y)|
AN Corollary. It is true that (Law of Cosines)

ly — x|I3 > 1T (y) — yl5 + T (y) — x|3
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Analysis of Projected GD for L-Lipschitz

Proof cont. Since Same as in classic GD!

* 1 * (|2 %112 “Lz
Fle) = F) < o (llxe =13 = lxa =27 [3) + 55,

taking the telescopic sum we have

1 L ) 1 - Loon . &L?
= ¥ F) = F(x) < szl = 2B = e — 2 [B) + S5
f=1
< S + aL? = € by choosing appropriately a, T
= 50T 5 y g approp y &, L.

The claim follows by convexity since 7 Zle flxy) > f (% Zf:l xt)

(Jensen’s inequality).

Optimization for Machine Learning



Conclusion

* |ntroduction to Convex Optimization
— Easy to minimize (generally is NP-hard).

2
— GD has rate of convergence O ( ) for L-Lipschitz.
— GD has rate of convergence O (Z) for L-smooth.

— GD has rate of convergence O (u In E) for L-smooth, u-convex.
— Same is true for Projected GD (similar analysis) for constrained
optimization.

* Next week we will talk about sub-gradients (non-
differentiable functions) and Stochastic Gradient Descent
(SGD).
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