Week 1 – LO2 Convex Optimization and Gradient Descent (cont)

CS 295 Optimization for Machine Learning Ioannis Panageas

Theorem (Gradient Descent). Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable, μ -strongly convex (want to minimize) and L-smooth. Let $R = ||x_0 - x^*||_2$. It holds for $T = \frac{2L}{\mu} \ln \left(\frac{R}{\epsilon}\right)$ $||x_T - x^*||_2 \le \epsilon$,

with appropriately choosing $\alpha = \frac{1}{L}$.

Theorem (Gradient Descent). Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable, μ -strongly convex (want to minimize) and L-smooth. Let $R = ||x_0 - x^*||_2$. It holds for $T = \frac{2L}{\mu} \ln \left(\frac{R}{\epsilon}\right)$ $||x_T - x^*||_2 \le \epsilon$,

with appropriately choosing $\alpha = \frac{1}{L}$.

Proof of Theorem. It holds that

$$\|x_T - x^*\|_2^2 = \|x_{T-1} - \frac{1}{L}\nabla f(x_{T-1}) - x^*\|_2^2 =$$

Theorem (Gradient Descent). Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable, μ -strongly convex (want to minimize) and L-smooth. Let $R = ||x_0 - x^*||_2$. It holds for $T = \frac{2L}{\mu} \ln \left(\frac{R}{\epsilon}\right)$ $||x_T - x^*||_2 \le \epsilon$,

with appropriately choosing $\alpha = \frac{1}{L}$.

Proof of Theorem. It holds that

$$\begin{aligned} \|x_T - x^*\|_2^2 &= \left\|x_{T-1} - \frac{1}{L}\nabla f(x_{T-1}) - x^*\right\|_2^2 = \\ &= \|x_{T-1} - x^*\|_2^2 + \frac{1}{L^2} \|\nabla f(x_{T-1})\|_2^2 - 2\frac{1}{L}\nabla f(x_{T-1})^\top (x_{T-1} - x^*) \end{aligned}$$

Theorem (Gradient Descent). Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable, μ -strongly convex (want to minimize) and L-smooth. Let $R = ||x_0 - x^*||_2$. It holds for $T = \frac{2L}{\mu} \ln \left(\frac{R}{\epsilon}\right)$ $||x_T - x^*||_2 \le \epsilon$,

with appropriately choosing $\alpha = \frac{1}{L}$.

Proof of Theorem. It holds that

$$||x_T - x^*||_2^2 = ||x_{T-1} - \frac{1}{L}\nabla f(x_{T-1}) - x^*||_2^2 =$$

 $= \|x_{T-1} - x^*\|_2^2 + \frac{1}{L^2} \|\nabla f(x_{T-1})\|_2^2 - 2\frac{1}{L}\nabla f(x_{T-1})^\top (x_{T-1} - x^*)$

From Exercise 2 and then Claim 2 we get

$$\frac{2}{L}\nabla f(x_{T-1})^{\top}(x^* - x_{T-1}) \leq \frac{2}{L}(f(x^*) - f(x_{T-1})) - \frac{\mu}{L} \|x^* - x_{T-1}\|_2^2.$$

$$\leq -\frac{1}{L^2} \|\nabla f(x_{T-1})\|_2^2 - \frac{\mu}{L} \|x^* - x_{T-1}\|_2^2.$$

Optimization for Machine Learning

Theorem (Gradient Descent). Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable, μ -strongly convex (want to minimize) and L-smooth. Let $R = ||x_0 - x^*||_2$. It holds for $T = \frac{2L}{\mu} \ln \left(\frac{R}{\epsilon}\right)$ $||x_T - x^*||_2 \le \epsilon$,

with appropriately choosing $\alpha = \frac{1}{L}$.

Proof of Theorem. It holds that

$$\|x_T - x^*\|_2^2 = \|x_{T-1} - \frac{1}{L}\nabla f(x_{T-1}) - x^*\|_2^2 =$$

 $= \|x_{T-1} - x^*\|_2^2 + \frac{1}{L^2} \|\nabla f(x_{T-1})\|_2^2 - 2\frac{1}{L}\nabla f(x_{T-1})^\top (x_{T-1} - x^*)$

Therefore
$$||x_T - x^*||_2^2 \le (1 - \frac{\mu}{L}) ||x_{T-1} - x^*||_2^2$$
.

Theorem (Gradient Descent). Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable, μ -strongly convex (want to minimize) and L-smooth. Let $R = ||x_0 - x^*||_2$. It holds for $T = \frac{2L}{\mu} \ln \left(\frac{R}{\epsilon}\right)$ $||x_T - x^*||_2 \le \epsilon$,

with appropriately choosing $\alpha = \frac{1}{L}$.

Proof of Theorem. It holds that

$$\|x_T - x^*\|_2^2 = \|x_{T-1} - \frac{1}{L}\nabla f(x_{T-1}) - x^*\|_2^2 =$$

 $= \|x_{T-1} - x^*\|_2^2 + \frac{1}{L^2} \|\nabla f(x_{T-1})\|_2^2 - 2\frac{1}{L}\nabla f(x_{T-1})^\top (x_{T-1} - x^*)$

Therefore
$$||x_T - x^*||_2^2 \le (1 - \frac{\mu}{L}) ||x_{T-1} - x^*||_2^2$$
.
Thus $||x_T - x^*||_2^2 \le (1 - \frac{\mu}{L})^T R^2 \le e^{-\frac{\mu T}{L}} R^2$.

Theorem (Gradient Descent). Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable, μ -strongly convex (want to minimize) and L-smooth. Let $R = ||x_0 - x^*||_2$. It holds for $T = \frac{2L}{\mu} \ln \left(\frac{R}{\epsilon}\right)$ $||x_T - x^*||_2 \le \epsilon$,

with appropriately choosing $\alpha = \frac{1}{L}$.

 $P_{T} \qquad \text{Remark (last iterate convergence!): } x_{T} \to x^{*}$ $\|x_{T} - x^{*}\|_{2}^{2} = \|x_{T-1} - \frac{1}{L}\nabla f(x_{T-1}) - x^{*}\|_{2}^{2} =$ $= \|x_{T-1} - x^{*}\|_{2}^{2} + \frac{1}{L^{2}}\|\nabla f(x_{T-1})\|_{2}^{2} - 2\frac{1}{L}\nabla f(x_{T-1})^{\top}(x_{T-1} - x^{*})$ $\text{Therefore } \|x_{T} - x^{*}\|_{2}^{2} \le (1 - \frac{\mu}{L}) \|x_{T-1} - x^{*}\|_{2}^{2}.$ $\text{Thus } \|x_{T} - x^{*}\|_{2}^{2} \le (1 - \frac{\mu}{L})^{T} R^{2} \le e^{-\frac{\mu}{L}} R^{2}.$

Projected Gradient Descent (PGD)

(for differentiable functions)

Definition (Projected Gradient Descent). Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable (want to minimize) in some compact convex set \mathcal{X} . The algorithm below is called projected gradient descent

$$x_{k+1} = \Pi_{\mathcal{X}}(x_k - \alpha \nabla f(x_k)).$$

Remarks

- The projection might not be efficient (is also an optimization problem)!!
- The minimizer x^* does not necessarily satisfy $\nabla f(x^*) = 0$.

Question: When the last remark can be true?

Theorem (Projected Gradient Descent). Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable, convex (want to minimize in some compact set \mathcal{X}) and L-Lipschitz. Let $R = ||x_1 - x^*||_2$, the distance between the initial point x_0 and minimizer x^* . It holds for $T = \frac{R^2 L^2}{\epsilon^2}$ $f\left(\frac{1}{T}\sum_{t=1}^T x_t\right) - f(x^*) \leq \epsilon$,

with appropriately choosing $\alpha = \frac{\epsilon}{L^2}$.

Remark

• Same guarantees as in the unconstrained case.

Proof. Set $y_t := x_t - \alpha \nabla f(x_t)$. It holds that

 $f(x_t) - f(x^*) \leq \nabla f(x_t)^\top (x_t - x^*)$ FOC for convexity,

Proof. Set $y_t := x_t - \alpha \nabla f(x_t)$. It holds that

 $f(x_t) - f(x^*) \le \nabla f(x_t)^\top (x_t - x^*) \text{ FOC for convexity,}$ $= \frac{1}{\alpha} (x_t - y_t)^\top (x_t - x^*) \text{ definition of GD,}$

Proof. Set $y_t := x_t - \alpha \nabla f(x_t)$. It holds that

 $f(x_t) - f(x^*) \le \nabla f(x_t)^\top (x_t - x^*) \text{ FOC for convexity,}$ $= \frac{1}{\alpha} (x_t - y_t)^\top (x_t - x^*) \text{ definition of GD,}$ $= \frac{1}{2\alpha} \left(\|x_t - x^*\|_2^2 + \|x_t - y_t\|_2^2 - \|y_t - x^*\|_2^2 \right) \text{ law of Cosines,}$

Proof. Set $y_t := x_t - \alpha \nabla f(x_t)$. It holds that

 $f(x_t) - f(x^*) \leq \nabla f(x_t)^\top (x_t - x^*) \text{ FOC for convexity,}$ = $\frac{1}{\alpha} (x_t - y_t)^\top (x_t - x^*)$ definition of GD, = $\frac{1}{2\alpha} \left(\|x_t - x^*\|_2^2 + \|x_t - y_t\|_2^2 - \|y_t - x^*\|_2^2 \right)$ law of Cosines, = $\frac{1}{2\alpha} \left(\|x_t - x^*\|_2^2 - \|y_t - x^*\|_2^2 \right) + \frac{\alpha}{2} \|\nabla f(x_t)\|_2^2$ Def. of y_t ,

Proof. Set $y_t := x_t - \alpha \nabla f(x_t)$. It holds that

 $f(x_t) - f(x^*) \leq \nabla f(x_t)^\top (x_t - x^*) \text{ FOC for convexity,}$ = $\frac{1}{\alpha} (x_t - y_t)^\top (x_t - x^*)$ definition of GD, = $\frac{1}{2\alpha} \left(\|x_t - x^*\|_2^2 + \|x_t - y_t\|_2^2 - \|y_t - x^*\|_2^2 \right)$ law of Cosines, = $\frac{1}{2\alpha} \left(\|x_t - x^*\|_2^2 - \|y_t - x^*\|_2^2 \right) + \frac{\alpha}{2} \|\nabla f(x_t)\|_2^2$ Def. of y_t , $\leq \frac{1}{2\alpha} \left(\|x_t - x^*\|_2^2 - \|y_t - x^*\|_2^2 \right) + \frac{\alpha L^2}{2}.$

Recall. Suppose f(x) is L-Lipschitz continous. Then $\forall x \in dom(f)$

 $\|\nabla f(x)\|_2 \le L.$

Optimization for Machine Learning

Claim. *It is true that*

$$(\Pi_{\mathcal{X}}(y) - x)^{\top} (\Pi_{\mathcal{X}}(y) - y) \le 0.$$

Proof. By picture.

Corollary. It is true that (Law of Cosines) $\|y - x\|_2^2 \ge \|\Pi_{\mathcal{X}}(y) - y\|_2^2 + \|\Pi_{\mathcal{X}}(y) - x\|_2^2$

Therefore
$$||y_t - x^*||_2^2 \ge ||x_{t+1} - y||_2^2 + ||x_{t+1} - x^*||_2^2$$

 $\ge ||x_{t+1} - x^*||_2^2$

Proof. By picture.

Corollary. It is true that (Law of Cosines) $\|y - x\|_2^2 \ge \|\Pi_{\mathcal{X}}(y) - y\|_2^2 + \|\Pi_{\mathcal{X}}(y) - x\|_2^2$

Proof cont. Since

Same as in classic GD!

$$f(x_t) - f(x^*) \leq \frac{1}{2\alpha} \left(\|x_t - x^*\|_2^2 - \|x_{t+1} - x^*\|_2^2 \right) + \frac{\alpha L^2}{2},$$

taking the telescopic sum we have

$$\frac{1}{T} \sum_{t=1}^{T} f(x_t) - f(x^*) \le \frac{1}{2\alpha T} (\|x_1 - x^*\|_2^2 - \|x_{t+1} - x^*\|_2^2) + \frac{\alpha L^2}{2}.$$
$$\le \frac{R^2}{2\alpha T} + \frac{\alpha L^2}{2} = \epsilon \text{ by choosing appropriately } \alpha, T.$$

The claim follows by convexity since $\frac{1}{T} \sum_{t=1}^{T} f(x_t) \ge f\left(\frac{1}{T} \sum_{t=1}^{T} x_t\right)$ (Jensen's inequality).

Conclusion

- Introduction to Convex Optimization
 - Easy to minimize (generally is NP-hard).
 - GD has rate of convergence $O\left(\frac{L^2}{\epsilon^2}\right)$ for *L*-Lipschitz.
 - GD has rate of convergence $O\left(\frac{L}{\epsilon}\right)$ for L-smooth.
 - GD has rate of convergence $O\left(\frac{L}{\mu}\ln\frac{1}{\epsilon}\right)$ for *L*-smooth, μ -convex.
 - Same is true for *Projected* GD (similar analysis) for constrained optimization.
- Next week we will talk about sub-gradients (nondifferentiable functions) and Stochastic Gradient Descent (SGD).